The research activities at LIFTEC are dedicated to the study of various phenomena related to Fluid Dynamics, with special attention to environmental problems, including experimental, computational and theoretical techniques.
The main lines of research are:
Optimisation of the design and manufacture of bipolar plates |
Development of processes and optimisation of the mechanical design of fuel cells |
Numerical simulation of processes in PEM fuel cells |
The research lines of the LIFTEC Fuel Cell Group aim to improve the design of components, systems and processes to manufacture fuel cells using a proton-exchange-polymer membrane (known as the PEM type) as an electrolyte at both low and high temperatures (up to 160°C). For that purpose, we have used experimental techniques and two- and three-dimensional numerical codes, developed entirely by group members and capable of simulating complex processes taking place inside these devices.
The main objective is to optimise the design and improve and simplify the processes involved in manufacturing fuel cells with varying powers and their components. The group can also optimise subsystems, create new experimental installations for evaluation and electrochemical characterisation, and research processes related to water and heat management.
The group’s three main lines of research are:
Development of processes and optimisation of the mechanical design of fuel cells: this includes studying the optimisation of the formation of membrane-electrode assemblies (MEAs), the development of sealing systems, the development and optimisation of more effective cooling systems, the optimisation of medium-power fuel cell assembly and sealing processes and the evaluation and electrochemical characterisation of these electrochemical devices.
Numerical simulation of processes in PEM fuel cells: this line studies the influence of various operating and manufacture parameters on the performance of PEM fuel cells in a way that is precise and far cheaper than using experimental methods.
Título: Fluidodinámica de una pila de combustible (ENE2005-09124-C04-03/ALT) Entidad financiadora: Ministerio de Educación y Ciencia Duración: 2005-2008 Investigador Principal: Félix Barreras Toledo Subvención: 81.158 € |
Título: Desarrollo de componentes más eficientes para pilas de combustible de metanol directo (PM042/2007) Entidad financiadora: Gobierno de Aragón (Dpto Ciencia, Tecnol. y Universidad) Duración: 2007-2009 Investigador Principal: Mª Jesús Lázaro (Responsable LIFTEC: Félix Barreras) Subvención: 57.120 € (LITEC: 19.040 €) |
Título: ODISEA: Optimización del diseño y fabricación de una pila de combustible polimérica de media potencia y alta eficiencia (ENE2008-06697-C04-01/CON) Entidad financiadora: Ministerio de Ciencia e Innovación Duración: 2008-2009 Investigador Principal: Félix Barreras Toledo Subvención: 10.890 € |
Título: Identificación de desarrollos y las necesidades tecnológicas en las tecnologías del hidrógeno y pilas de tipo PEM en Aragón (Necatech) Entidad financiadora: Fundación del Hidrógeno de Aragón Duración: 2008 Investigador Principal: Félix Barreras Toledo Subvención: 4.763 € |
Título: Vehículo-herramienta multipropósito teleoperado con tracción integral y sistema de propulsión basado en pila de combustible (CIT-370000-2008-11) Entidad financiadora: Ministerio de Ciencia e Innovación Duración: 2008-2010 Investigador Principal: Mario Maza Frechín (Responsable LIFTEC: Félix Barreras) Subvención: 658.012 € |
Título: Optimización del diseño fluidodinámico y mecánico de un sistema de pila PEM de alta temperatura (ENE2009-14750-C05-02/CON) Entidad financiadora: Ministerio de Ciencia e Innovación Duración: 2008-2010 Investigador Principal: Félix Barreras Subvención: 94.864 € |
Título: Desarrollo tecnológico aplicado a las pilas de hidrógeno de alta temperatura con membrana intercambio de protones Entidad financiadora: VEA Qualitas, S.L. Duración: 2009 Investigador Principal: Félix Barreras Subvención: 5.684 € |
Título: Fabricación de un prototipo de pila de hidrógeno de alta temperatura Entidad financiadora: VEA Qualitas, S.L. Duración: 2010 Investigador Principal: Félix Barreras Subvención: 10.974 € |
Título: Organización del Congreso "III Iberian Symposium on Hydrogen, Fuel Cells and Advanced Batteries HYCELTEC 2011" (ENE2010-11025-E/ALT) Entidad financiadora: Ministerio de Ciencia e Innovación Duración: 2010-2011 Investigador Principal: Félix Barreras Subvención: 13.000 € |
Título: Diseño y fabricación de una pila PEM ultraligera de media potencia para unidad de energía de un UAV (ENE2012-38642-C02-01) Entidad financiadora: Ministerio de Economía y Competitividad Duración: 2013-2015 Investigador Principal: Félix Barreras Subvención: 59.560 € |
F. Barreras, A. Lozano, L. Valiño, C. Marin, A. Pascau, “Flow Distribution in a Bipolar Plate of a PEM Fuel Cell: Experiments and Numerical Simulation Studies”, Journal of Power Sources, vol. 144 (1): 54-66, 2005
A. Lozano, F. Barreras, L. Valiño, C. Marin, “Imaging of Gas Flow through a Porous Medium from a Fuel Cell Bipolar Plate by Laser-induced Fluorescence”, Experiments in Fluids, vol. 42 (2): 301-310 (2007)
F. Barreras, A. Lozano, L. Valiño, R. Mustata, C. Marín, “Fluid dynamics performance of different bipolar plates. Part I: velocity and pressure fields”, Journal of Power Sources, vol. 175, 841-850, 2008
A. Lozano, F. Barreras, L. Valiño, R. Mustata, “Fluid dynamics performance of different bipolar plates. Part II: flow through the diffusion layer”, Journal of Power Sources, vol. 179 (2), 711-722, 2008
A.M. López, F. Barreras, A. Lozano, J.A. García, L. Valiño, R. Mustata, “Comparison of Water Management between Two Bipolar Plate Flow-Field Geometries in Proton Exchange Membrane Fuel Cells at Low-density Current Range”, Journal of Power Sources, vol. 192, 94-99, 2009
R. Mustata, L. Valiño, F. Barreras, M.I. Gil, A. Lozano, “Study of the Distribution of Air Flow in a Proton Exchange Membrane Fuel Cell Stack”, Journal of Power Sources, vol. 192, 185-189, 2009
A.M. López, F. Barreras, A. Lozano, L. González, J.A. García, L. Valiño, R. Mustata, “Experimental Study of the Durability of two different Coatings for Aluminum-based Bipolar Plates Used in PEM Fuel Cell Stack”, Journal of New Materials for Electrochemical Systems, vol.12 (2-3), 97-102, 2009
J. Barranco, F. Barreras, A. Lozano, A. M. Lopez, V. Roda, J. Martin, M. Maza, G. G. Fuentes, E. Almandoz, “Cr and Zr/Cr Nitride CAE-PVD Coated Aluminum Bipolar Plates for Polymer Electrolyte Membrane Fuel Cells”, Intl. J. of Hydrogen Energy, vol.35 (20): 11489 - 11498 (2010)
J. Barranco, F. Barreras, A. Lozano, M. Maza, “Influence of CrN-coating Thickness on the Corrosion Resistance Behaviour of Aluminium-based Bipolar Plates”, J. of Power Sources, vol.196 (9): 044103-1 044103-7 (2011)
F. Barreras, A. M. Lopez, A. Lozano, J. Barranco, “Experimental Study of the Pressure Drop in the Cathode Side of Air-forced Open-cathode Proton Exchange Membrane Fuel Cell”, Intl. J. of Hydrogen Energy, vol. 36 (13): 7612-7620 (2011)
F. Barreras, A. Lozano, R. Mustata, L., Valiño, “Foreword. III Iberian Symposium on Hydrogen, Fuel Cells and Advanced Batteries, HYCELTEC-2011”, Intl. J. of Hydrogen Energy, vol. 37 (8): 6976-6977 (2012)
A. Eguizábal, J. Lemus, V. Roda; M. Urbiztondo, F. Barreras, M. P. Pina, “Nanostructured electrolyte membranes based on zeotypes, protic ionic liquids and porous PBI membranes: preparation, characterization and MEA testing”, Intl. J. of Hydrogen Energy, vol. 37 (8): 7221-7234 (2012)
A.M. Lopez, J. Barroso, V. Roda, J. Barranco, A. Lozano, F. Barreras, “Design and development of the cooling system of a 2 kW nominal power open-cathode PEM fuel cell”, Intl. J. of Hydrogen Energy, vol. 37 (8): 7289-7298 (2012)
F. Barreras, A. Lozano, A.M. López-Sabirón “Response to the Comments on experimental study of the pressure drop in the cathode side of air-forced open-cathode proton exchange membrane fuel cells by Dejan Brkić”, Intl. J. of Hydrogen Energy, vol. 37 (14): 10965 (2012)
F. Barreras, M. Maza, A. Lozano, S. Báscones, V. Roda, J.E. Barranco, M. Cerqueira, A. Vergés, “Design and development of a multipurpose utility AWD electric vehicle with a hybrid powertrain based on PEM fuel cells and batteries”, Intl. J. of Hydrogen Energy, vol. 37 (20): 15367-15379 (2012)
F. Barreras, A. Lozano, J. Barroso, V. Roda, M. Maza, “Theoretical model for the optimal design of air cooling systems of polymer electrolyte fuel cells. Application to a high-temperature PEMFC”, Fuel Cells, vol. 13 (2): 227-237 (2013)
Inventores: Félix Barreras, Antonio Lozano, Luis Valiño, Carlos Marín Título: Placa bipolar para distribución homogénea del flujo en pilas de combustible N. de solicitud: P200602547 Fecha de prioridad: 11 de octubre de 2006 Fecha concesión: 21 de diciembre de 2009 (pub. 08 de enero de 2010) Nº Patente: ES 2 315 126 B1 Entidad titular: Consejo Superior de Investigaciones Científicas (CSIC) |
Inventores: Félix Barreras, Antonio Lozano, Luis Valiño, Carlos Marín Título: Bipolar plate for uniform flow distribution in fuel cells Fecha de prioridad: 10 de abril de 2008 Nº Patente: WO 2008/040835 A1 Entidad titular: Consejo Superior de Investigaciones Científicas (CSIC) |
Inventores: Eduardo Lincheta, Félix Barreras, Antonio Lozano, Luis Valiño, Radu Mustata Título: Placa de pila de combustible con geometría de flujo de “espina de pez” N. de solicitud: P201031092 Fecha de prioridad: 16 de julio de 2010 Fecha concesión: 5 de marzo de 2013 Nº Patente: ES 2 397 144 A1 Entidad titular: Consejo Superior de Investigaciones Científicas (CSIC) |
Inventores: Eduardo Lincheta, Antonio Lozano, Félix Barreras, Luis Valiño, Radu Mustata Título: Placa de pila de combustible con varias áreas de reacción química N. de solicitud: P201031093 Fecha de prioridad: 16 de julio de 2010 Fecha concesión: - Nº Patente: - Entidad titular: Consejo Superior de Investigaciones Científicas (CSIC) |
Inventores: Félix Barreras, Antonio Lozano, Vicente Roda Título: Pila de combustible modular por bloques N. de solicitud: P201330888 Fecha de prioridad: 14 de junio de 2013 Fecha concesión: - Nº Patente: - Entidad titular: Consejo Superior de Investigaciones Científicas (CSIC) |
Bipolar plates are one of the mechanical components of these devices and responsible for over 80% of the weight in a stack. They also provide the cells forming it with the mechanical stability they require by physically separating them and acting as electrical connectors between them. Flow geometries also ensure correct distribution of reagents on the catalyst layer and help remove the water generated during the electrochemical reaction to the exterior. The heat generated in the cathodic catalyst layers by the reaction is exchanged with the exterior through these elements. Consequently, a good design of the channel geometry and appropriate materials are a must.
Graphite is the material most often used in commercial PEM fuel cells. It is a very light material with limited thermal and electrical conductivity in the plane perpendicular to the reaction zones. That is why the use of metal plates can be quite advantageous. However, metals are heavier than graphite and can degrade in acidic atmospheres when moisture is present.
At LIFTEC we study the performance of surface coatings used in low-density metal plates as an alternative to graphite plates by assessing their durability in prolonged tests in actual operating conditions. High-resolution images or SEM-EDX are used to analyse the degradation of the plates and study the formation of pitting or fractures in the coating. This same technique is applied to the MEAs to detect the migration of metal ions from the plates to the diffusion or catalyst layer.
Damage observed in a nerve in the reaction zone of an aluminium bipolar plate covered with chemical nickel |
SEM image of a fissure in the chromium nitride and zirconium two-layer coating deposited by PVD on aluminium plates |
DX analysis of a MEA in which we can observe the migration of Al and Ni ions from the bipolar plate surface
The uniform flow distribution of reactant gases from the main collectors to each of the plates and their homogenous distribution over the entire area of the catalyst layers are essential for optimal fuel cell operation. That is why channel sizing protocols and flow geometry have become basic pillars of bipolar plate design.
The group has several two and three-dimensional codes to optimise the design of the flow geometries of bipolar plates and general collectors used to distribute reagent gases to each cell. These codes are based on numerically solving Navier-Stokes (NS) equations describing the movement of incomprehensible, Newtonian and laminar fluids, such as the gases in cathodes and anodes in PEM fuel cells.
Numerical simulation results of the flow distribution of reagent gases to each cell in a stack from general collectors
Over time, the level of complexity has increased and the description of other complex processes has been added, for example transport of gases, protons and ions through porous media (diffusion and catalyst layers and proton conducting membrane), formation, condensation and management of water in the fuel cell, heat transfer, etc. (see line 3).
Based on the outcomes of the numerical simulations, the group has patented two new flow geometries: “cascade” and “herringbone”.<0} Our experimental results have been very good so far, especially compared with those achieved using serpentine, parallel-serpentine or straight-parallel channel geometries.
![]() |
![]() |
Bipolar plates with the two flow geometries designed and patented by the group: “cascade” (left) and “herringbone” (right) |
Water is essential for the proton conduction of polymer membranes in low-temperature PEM cells. However, the water present inside the cell also affects gas transport and distribution through flow channels, the diffusion layer and the catalyst layer. Although a high water content favours proton conductivity in the membrane, in excess in liquid form it can obstruct pores or channels making reagent transfer difficult. In fact, the phenomenon known as pooling is usually more severe in the cathode than in the anode since the water generated there makes it difficult for oxygen (or air) to diffuse towards the electrodes.
LIFTEC focuses on experimental analysis of how water is generated and managed in different types of flow geometries in operating single cells using direct display with CCD cameras. This makes it possible to detect condensation or pooling zones that prevent the correct distribution of the gas in the diffusion layer and to improve channel designs or create strategies to extract water during operation.
Transparent bipolar plate used for displays with a CCD camera
Single cell used for the actual operation test and evaluation of the generation of water using direct display
Image taken with CCD camera of the cathode in a single cell during a test showing the condensation of water on the plate surface